Predicting cover crop biomass by lightweight UAS-1 based RGB and NIR photography: an applied 2 photogrammetric approach.


Easy-to-capture and robust plant status indicators are important factors when implementing precision agriculture techniques on fields. In this study, aerial red, green and blue color space (RGB) photography and near-infrared (NIR) photography was performed on an experimental field site with nine different cover crops. A lightweight unmanned aerial system (UAS) served as platform, consumer cameras as sensors. Photos were photogrammetrically processed to orthophotos and digital surface models (DSMs). In a first validation step, the spatial precision of RGB orthophotos (x and y, ± 0.1 m) and DSMs (z, ± 0.1 m) was determined. Then, canopy cover (CC), plant height (PH), normalized differenced vegetation index (NDVI), red edge inflection point (REIP), and green red vegetation index (GRVI) were extracted. In a second validation step, the PHs derived from the DSMs were compared with ground truth ruler measurements. A strong linear relationship was observed (R 2=0.80-0.84). Finally, destructive biomass samples were taken and compared with the remotely-sensed characteristics. Biomass correlated best with plant height (PH), and good approximations with linear regressions were found (R2=0.74 for four selected species, R2=0.58 for all nine species). CC and the vegetation indices (VIs) showed less significant and less strong overall correlations, but performed well for certain species. It is therefore evident that the use of DSM-based PHs provides a feasible approach to a species-independent non-destructive biomass determination, where the performance of VIs is more species-dependent.

Open preprint

You need to login in order to like/dislike

Inline Feedbacks
View all comments
Preprints for Agriculture and Allied Sciences
Advisory Board
  • Leisa Armstrong, Edith Cowan University, Australia
  • Arianna Becerril García, Autonomous University of the State of Mexico, Redalyc/AmeliCA, Mexico
  • Susmita Das, Bangladesh Agricultural Research Council
  • Abeer Elhalwagi, National Gene Bank, Egypt
  • Gopinath KA, Central Research Institute for Dryland Agriculture
  • Niklaus Grünwald, USDA Agricultural Research Service
  • Sridhar Gutam, ICAR IIHR/Open Access India
  • Vinodh Ilangovan, Max Planck Institute for Biophysical Chemistry
  • Jayalakshmi M, ANGRAU, India
  • Khelif Karima, Institut National de la Recherche Agronomique d'Algérie
  • Dinesh Kumar, Indian Agricultural Statistics Research Institute
  • Satendra Kumar Singh, Indian Council of Agricultural Research
  • Devika P. Madalli, DRTC/Indian Statistical Institute, India
  • Prateek Mahalwar, Cellulosic Technologies UG, Germany
  • Bernard Pochet, University of Liège - Gembloux Agro-Bio Tech
  • Vassilis Protonotarios, NEUROPUBLIC
  • Andy Robinson, CABI
  • Paraj Shukla, King Saud University
  • Chandni Singh, Indian Institute for Human Settlements
  • Kuldeep Singh Jadon, ICAR-Central Arid Zone Research Institute, India
  • Rajeev K Varshney, CGIAR/ICRISAT, India
  • Sumant Vyas, ICAR- National Research Centre on Camel, India
  • Oya Yildirim Rieger, Ithaka S+R/ITHAKA, USA
©2020 CABI is a registered EU trademark