Increase in Air Temperature in The Region of South Sumatra Province as the Indicator of Global Warming and the Effect on Transpiration of Lansium domesticum Corr.


Global warming is one of biggest problems faced in the 21st century. One of the impacts of global warming is that it can affect the transpiration rate of plants that °Ccur. This study purpose to see how much increase in air temperature that occurred in the region of South Sumatra Province and to know the effect of increase in ari temperature in the region of South Sumatra Province on transpiration rate of Lansium domesticum Corr. This study used a complete randomized design with 9 treatments (22.9 °C, 23.6 °C, 24.6 °C, 26.3 °C, 27 °C, 27.8 °C, 31.7 °C, 32.5 °C, and 32.9 °C) and 3 replications. Air temperature data as secondary data obtained from the Meteorology, Climatology and Geophysics Agency (MCGA) Palembang Climatology Station in South Sumatra Province. The measurement of transpiration rate is done by modified potometer method with additional glass box. The data obtained are presented in the form of tables and graphs. Transpiration rate (mm3/g plant/hour) at temperture 22.9 °C = 4.37, 23.6 °C = 7.03, 24.6 °C = 8.03, 26.3 °C = 10.11, 27 °C = 13.13, 27.8 °C = 17.87, 31.7 °C = 23.21, 32.5 °C= 25.45 and 32.9 °C= 27.24. At the minimum air temperature in the region of South Sumatra Province there is increase in air temperature of 1.5 °C, average daily air temperature increase 1.3 °C and maximum air temperature increase 1.2 °C.

Open preprint

You need to login in order to like/dislike

Inline Feedbacks
View all comments
Preprints for Agriculture and Allied Sciences
Advisory Board
  • Leisa Armstrong, Edith Cowan University, Australia
  • Arianna Becerril García, Autonomous University of the State of Mexico, Redalyc/AmeliCA, Mexico
  • Susmita Das, Bangladesh Agricultural Research Council
  • Abeer Elhalwagi, National Gene Bank, Egypt
  • Gopinath KA, Central Research Institute for Dryland Agriculture
  • Niklaus Grünwald, USDA Agricultural Research Service
  • Sridhar Gutam, ICAR IIHR/Open Access India
  • Vinodh Ilangovan, Max Planck Institute for Biophysical Chemistry
  • Jayalakshmi M, ANGRAU, India
  • Khelif Karima, Institut National de la Recherche Agronomique d'Algérie
  • Dinesh Kumar, Indian Agricultural Statistics Research Institute
  • Satendra Kumar Singh, Indian Council of Agricultural Research
  • Devika P. Madalli, DRTC/Indian Statistical Institute, India
  • Prateek Mahalwar, Cellulosic Technologies UG, Germany
  • Bernard Pochet, University of Liège - Gembloux Agro-Bio Tech
  • Vassilis Protonotarios, NEUROPUBLIC
  • Andy Robinson, CABI
  • Paraj Shukla, King Saud University
  • Chandni Singh, Indian Institute for Human Settlements
  • Kuldeep Singh Jadon, ICAR-Central Arid Zone Research Institute, India
  • Rajeev K Varshney, CGIAR/ICRISAT, India
  • Sumant Vyas, ICAR- National Research Centre on Camel, India
  • Oya Yildirim Rieger, Ithaka S+R/ITHAKA, USA
©2020 CABI is a registered EU trademark